

NabtoTM	–		NABTO/001/TEN/023				How	to	write	a	uNabto	device	application		 Page	1	of	46	

		

	

	

	

	

	

	

		

	

	

Nabto SDK

How to Write a uNabto Device Application
NABTO/001/TEN/023

	

Abstract

NabtoTM	–		NABTO/001/TEN/023				How	to	write	a	uNabto	device	application		 Page	2	of	46	

	

	

	

	 	

Contents	
	

1	 Abstract	...	4	

2	 Bibliography	..	4	

3	 Nabto	Platform	Basics	...	5	

3.1	 Nabto	Communication	Patterns	..	6	

4	 uNabto	Device	Introduction	..	6	

5	 Application	components	...	9	

5.1	 uNabto	framework	compile	time	configuration	..	9	

5.1.1	 unabto_config.h	..	9	

5.2	 uNabto	initialization	...	9	

5.3	 uNabto	Framework	Runner	...	10	

5.3.1	 Enabling	Cryptography	..	11	

5.4	 The	client	query	handler	..	12	

5.4.1	 Synchronous	and	asynchronous	operation	modes	..	12	

5.5	 Synchronous	query	request	handling	..	13	

5.6	 Processing	the	query	..	14	

5.6.1	 The	query	model	..	14	

5.6.2	 The	query	parameter	types	...	14	

5.6.3	 The	query	list	element	...	15	

5.6.4	 Working	with	the	query	model	in	the	application	...	16	

5.6.5	 Integral	types	...	16	

5.6.6	 The	raw	type	..	18	

5.6.7	 Lists	..	19	

Abstract

NabtoTM	–		NABTO/001/TEN/023				How	to	write	a	uNabto	device	application		 Page	3	of	46	

5.7	 Asynchronous	request	handling	..	21	

5.8	 General	application	development	notes	..	25	

5.9	 Query	request/response	size	platform	configuration	..	25	

6	 Streaming	..	26	

6.1	 Stream	Demo	Application	..	26	

6.2	 Streaming	Usage	..	27	

6.2.1	 New	streams	..	27	

6.2.2	 Reading	from	a	stream	..	27	

6.2.3	 Writing	to	a	stream	..	28	

6.2.4	 Closing	a	stream	..	28	

6.2.5	 Releasing	a	stream	...	28	

6.2.6	 Stream	Events	..	28	

6.3	 Stream	Configuration	...	29	

7	 Access	Control	...	29	

7.1	 Connection	level	access	control	...	29	

7.2	 Query	level	access	control	...	30	

8	 Special	event	handlers	..	31	

8.1	 Getting	a	UTC	time	stamp	from	the	basestation	...	32	

8.2	 Monitoring	the	basestation	connection	status	..	32	

9	 The	log	printing	framework	...	32	

9.1	 Printing	...	33	

9.2	 Controlling	log	printing	by	severity	..	33	

10	 uNabto	helper	modules	...	34	

10.1	 ACL	...	34	

10.2	 Configuration	Store	..	34	

11	 uNabto	platform	adapters	...	34	

11.1	 Porting	uNabto	-	Creating	a	new	uNabto	Platform	Adapter	..	36	

11.1.1	 Overall	Structure	...	36	

11.1.2	 Basic	code	..	36	

11.1.3	 Implementing	unabto_platform_types.h	..	38	

Abstract

NabtoTM	–		NABTO/001/TEN/023				How	to	write	a	uNabto	device	application		 Page	4	of	46	

11.1.4	 Implementing	unabto_platform.h	..	39	

11.1.5	 Implementing	a	Network	Adapter	..	39	

11.1.6	 Implementing	a	Time	Adapter	..	40	

11.1.7	 Implementing	a	DNS	Adapter	..	41	

11.1.8	 Implementing	a	Random	Adapter	...	43	

12	 The	uNabto	framework	source	code	...	43	

12.1	 Where	to	download	the	source	code	..	43	

12.2	 The	structure	of	the	source	code	...	43	

12.2.1	 The	uNabto	framework	core	source	code	and	header	file	directory	..	43	

12.2.2	 The	uNabto	platform	adapter	specific	source	directories	...	43	

12.2.3	 The	feature	module	and	platform	adapter	specific	source	directory	...	44	

12.2.4	 API	include	directories	..	44	

12.3	 Building	the	uNabto	SDK	with	CMake	..	44	

12.4	 Device	platform	memory	requirements	..	45	

12.4.1	 RAM	usage	..	45	

12.4.2	 ROM	usage	..	45	

12.5	 Summary	of	the	referenced	configuration	parameters	...	46	

1 Abstract	
This	document	describes	the	various	steps	in	creating	a	uNabto	Micro	Server	(a	Nabto	enabled	device	
application).		Application	development	guidelines,	short	descriptions	of	the	target	device	requirements,	and	the	
uNabto	framework	interfaces	are	the	main	focus	points.		After	reading	this	document	an	application	developer	
should	be	able	to	create	basic	uNabto	enabled	device	applications,	written	in	the	C	programming	language.	

2 Bibliography	
TEN025	 Writing	a	Nabto	Client	SDK	application	

	 	

Nabto Platform Basics

NabtoTM	–		NABTO/001/TEN/023				How	to	write	a	uNabto	device	application		 Page	5	of	46	

3 Nabto	Platform	Basics	

	

The	Nabto	platform	consists	of	3	components:		

• Nabto	client:	Libraries	supplied	by	Nabto,	used	by	the	customer’s	application	
• Nabto	device:	The	uNabto	SDK	-	an	open	source	framework	supplied	by	Nabto,	integrated	with	the	

customer’s	device	application		
• Nabto	basestation:	Services	supplied	by	Nabto	(Nabto-	or	self-hosted)	that	mediates	connections	

between	Nabto	clients	and	devices.		

The	Nabto	client	initiates	a	direct,	encrypted	connection	to	the	Nabto	enabled	device	–	the	Nabto	basestation	
mediates	this	direct	connection:	The	device’s	unique	name,	e.g.	<serial>.vendor.net,	is	mapped	to	the	IP	address	
of	the	Nabto	basestation	–	this	is	where	devices	register	when	online	and	where	clients	look	for	available	devices.	
After	connection	establishment,	the	client	and	device	communicates	directly	with	each	other,	the	basestation	is	
out	of	the	loop	–	no	data	is	stored	on	the	basestation,	it	only	knows	about	currently	available	Nabto	enabled	
devices.			

The	client	can	also	discover	the	device	if	located	on	the	same	LAN	and	communicate	directly	without	the	
basestation	–	useful	for	bootstrap	scenarios	or	for	offline	use.	

Integrating	Nabto	on	the	customer's	device	is	the	topic	of	[TEN023].	

Nabto	client	applications	developed	using	the	Nabto	Client	SDK	described	in	[TEN025].	The	Nabto	Client	SDK	is	the	
lowest	level	way	of	developing	a	Nabto	application	-	several	wrappers	exist	on	top	of	this	lowest	level	SDK	to	
provide	a	more	abstract	experience,	for	instance	for	developing	Cordova/Ionic	or	Xamarin	hybrid	apps	or	just	
simplify	native	Android	and	iOS	app	development.		

uNabto Device Introduction

NabtoTM	–		NABTO/001/TEN/023				How	to	write	a	uNabto	device	application		 Page	6	of	46	

3.1 Nabto	Communication	Patterns	

The	Nabto	platform	supports	3	communication	patterns	that	will	be	referenced	throughout	this	document:	

RPC:	The	Nabto	P2P-RPC	communication	mechanism	allows	a	client	to	securely	invoke	a	remote	function	
on	a	Nabto	device.	The	device	implements	an	interface	definition	shared	between	client	and	device,	the	

client	works	with	normal	JSON	documents,	exchanged	in	a	compact	representation	with	the	device.		

Streaming:	Nabto	P2P-Streaming	can	be	used	for	retrieving	larger	amounts	of	data	from	a	device	or	sending	
e.g.	a	firmware	update.	With	sufficient	resources	available	on	the	device,	Nabto	P2P-Streaming	can	be	used	

for	high	performance	streaming	suitable	for	video	scenarios.	

Push:	Nabto	Push	is	used	for	communication	initiated	by	the	device,	for	instance	to	implement	mobile	push	
notifications	or	to	support	big	data	scenarios	where	data	is	collected	centrally	for	further	analysis.	Nabto	

Push	can	also	trigger	an	M2M	scenario	using	RPC	or	Streaming	-	e.g.	when	a	certain	condition	is	triggered,	the	
device	sends	a	Nabto	Push	message	and	a	server	function	invokes	an	RPC	function	or	streams	data.	

	

4 uNabto	Device	Introduction	
A	uNabto	device	application	consists	of	3	parts,	running	on	top	of	the	native	platform:	

uNabto	Platform	Adapter

Native	Platform

uNabto	Framework

uNabto	Device	Application

	

The	uNabto	Device	Application	receives	queries	from	the	client	via	the	uNabto	Framework	and	may	use	the	Native	
Platform	for	data	storage,	IO	etc.	The	uNabto	Device	Application	component	is	created	by	the	application	
developer	and	includes	integration	with	e.g.	an	existing	backend	to	retrieve	data	from.	The	uNabto	SDK	includes	
demo	applications	that	may	be	suitable	as	starting	points.	

The	uNabto	Framework	abstracts	all	network	related	communication	away	from	the	application.	In	fact,	the	
application	has	no	awareness	of	a	network	and	is	at	the	core	just	the	implementation	of	a	remote	procedure	call.		

uNabto Device Introduction

NabtoTM	–		NABTO/001/TEN/023				How	to	write	a	uNabto	device	application		 Page	7	of	46	

This	makes	it	very	simple	to	make	network	enabled	applications	and	port	them	to	other	uNabto	enabled	devices.	
Another	aspect	that	makes	it	simple	to	develop	applications,	is	that	the	uNabto	API	is	very	small,	consisting	of	just	
a	handful	of	generic	functions.	The	uNabto	SDK	contains	all	the	code	for	the	uNabto	Framework.	

The	uNabto	Platform	Adapter	is	a	small	component	that	abstracts	the	Native	Platforms	network	and	time	
functionality.	This	allows	for	a	very	simple	port	of	the	uNabto	Framework	to	a	given	native	platform.	The	uNabto	
SDK	contains	platform	adapters	for	various	hardware	platforms,	and	for	the	Microsoft	Windows	and	Linux	
operating	systems.	Details	on	how	to	create	a	uNabto	Platform	Adapter	for	a	new	platform	is	provided	in	section	
"Porting	uNabto"	below.			

The	uNabto	Device	Application	will	act	as	a	pure	data	content	provider	for	the	remote	client	application	and	will	in	
many	simple	designs	simply	be	a	passive	part,	just	waiting	for	requests	from	the	client.	In	a	simple	design	the	
application	specific	code	is	just	a	few	code	lines	and	thereby	enabling	rapid	application	development.	

The	uNabto	Device	Application	can	be	subdivided	into	the	following	components:	

Client	Query	
Handler

uNabto	
Framework	
Runner

uNabto
Framework	
Initializer

Application	business	logic

uNabto	Framework

	

The	Application	business	logic	is	the	actual	customer	application	running	on	the	device,	e.g.	an	existing	application	
extended	with	remote	access	capabilities	through	Nabto.	

The	uNabto	Framework	Initializer	component	initializes	the	uNabto	Framework	and	configures	the	uNabto	device	
application’s	unique	identifier.	

The	uNabto	Framework	Runner	component	is	responsible	for	propelling	the	uNabto	Framework.		This	and	the	
initialization	component	are	typical	very	small	and	in	general	very	alike	from	application	to	application.	

The	Client	Query	Handler	component	is	where	all	queries	from	the	client	are	processed,	typically	by	interacting	
with	the	application’s	business	logic	to	create	a	response.	The	Client	Query	Handler	component	is	in	general	
unique	from	application	to	application.			

	–	The	dotted	lines	illustrate	the	level	of	interaction	between	the	various	components	in	a	typical	application.	

uNabto Device Introduction

NabtoTM	–		NABTO/001/TEN/023				How	to	write	a	uNabto	device	application		 Page	8	of	46	

The	following	chapter	will	describe	how	to	create	each	of	the	uNabto	Framwork	initializer,	uNabto	Framework	
Runner	and	the	Client	Query	Handler	components.	

	

	
	

	

	 	

Application components

NabtoTM	–		NABTO/001/TEN/023				How	to	write	a	uNabto	device	application		 Page	9	of	46	

5 Application	components	
This	chapter	will	give	an	introduction	to	uNabto	Framework	compile	time	configuration	and	describe	the	three	
required	sub	components	described	in	the	previous	section..			

5.1 uNabto	framework	compile	time	configuration	

The	uNabto	framework	has	a	vast	number	of	configuration	parameters	thereby	enabling	the	application	
developer	detailed	compile	time	memory	resource	usage	trimming	and	feature	selection.	The	many	configuration	
parameters	and	their	interdependence	are	defined	in	unabto_config_defaults.h	
(https://github.com/nabto/unabto/blob/master/src/unabto/unabto_config_defaults.h),	the	most	important	are	
described	in	this	document.	

5.1.1 unabto_config.h	

unabto_config.h	is	a	mandatory	and	application	developer	created	placeholder	for	all	uNabto	application	
specific	configuration	parameters.	This	file	must	be	placed	in	the	compiler’s	include	search	path.		It	is	also	a	
possibility	to	let	some	or	all	the	parameters	be	defined	as	compiler	defined	options,	but	in	any	case	the	file	must	
exist.		

All	the	configuration	parameters	are	configured	by	macro	definitions	in	the	configuration	file.	E.g.:	

#define NABTO_RESPONSE_MAX_SIZE 1300

A	minimal	and	in	general	compilable	configuration	file,	for	a	platform	without	hard	RAM	resource	limits,	could	
look	like	this:	

#ifndef _UNABTO_CONFIG_H_
#define _UNABTO_CONFIG_H_

#define NABTO_RESPONSE_MAX_SIZE 1300
#define NABTO_RESPONSE_MAX_SIZE 1300
#define NABTO_SET_TIME_FROM_ALIVE 0
#define NABTO_ENABLE_UCRYPTO 0
#define NABTO_ENABLE_LOGGING 0

#endif /*_UNABTO_CONFIG_H_*/

5.2 uNabto	initialization	

The	uNabto	framework	has	to	be	initialized	explicitly	by	calling	two	functions	in	sequence;	the	first	function	
initializes	the	uNabto	framework	context:	

nabto_main_setup* unabto_init_context(void)

Application components

NabtoTM	–		NABTO/001/TEN/023				How	to	write	a	uNabto	device	application		 Page	10	of	46	

The	returned	nabto_main_setup	structure	is	used	to	runtime	configure	the	uNabto	framework.	The	following	
fields	in	this	structure	are	the	most	relevant	for	the	application	developer:	

Name	 Type	 Default	 Description	
id const char* none	 This	must	be	set	to	a	string	containing	the	unique	device	id.	

The	id	must	DNS	resolve	to	the	basestation.		

E.g.:	1234.mycompany.com	

url const char* NULL Deprecated:	This	may	optionally	be	set	to	a	string	directing	
the	client	to	an	alternative	public	location	for	the	now	
deprecated	HTML	device	driver	bundle.		

presharedKey

	

uint8_t[16] zero	 The	uNabto	cryptographic	engine	uses	symmetric-key	
cryptography.	If	NABTO_ENABLE_UCRYPTO	is	set	and	
communication	is	to	be	secure,	this	16	bytes	array	must	be	
initialized	with	the	secret	shared	key.	If	the	field	is	left	
unchanged,	the	key	will	be	the	special	zero	cryptographic	
key.	See		unabto_config_defaults.h		for	details.		

	

When	the	fields	have	been	configured,	the	uNabto	framework	is	initialized	and	configured	with	a	call	to:	

bool unabto_init(void)

The	function	will	return	false	if	native	platform’s	network	layer	fails	initialization.	

A	usage	example	is	shown	in	the	next	section.	

5.3 uNabto	Framework	Runner	

The	uNabto	framework	is	designed	to		run	on	native	platforms	without	an	operative	system.	On	a	platform	
without	the	concept	of	processes,	the	uNabto	framework	has	to	be	actively	propelled	by	the	uNabto	device	
application	by	calling	this	function:	

void unabto_tick(void)

The	function	has	to	be	called	regularly	to	execute	the	internal	interface	polls	and	service	functions.	The	call	
interval	should	not	exceed	10ms	to	avoid	retransmissions	and	a	sluggish	user	experience.	

Due	to	the	simplicity,	this	method	of	propelling	the	uNabto	framework	is	also	often	used	on	native	platforms	with	
a	full	operating	system,	like	Unix.		

A	simple	example	for	a	main	function	in	a	uNabto	device	application	with	initialization:	

Application components

NabtoTM	–		NABTO/001/TEN/023				How	to	write	a	uNabto	device	application		 Page	11	of	46	

int main()
{
 nabto_main_setup* nms;
 nms = unabto_init_context(void);
 /* replace <unique string> with a unique text string e.g.
 the Ethernet MAC address */
 nms->id = <unique string>”.demo.u.nabto.net”;
 if (!unabto_init(void))
 {
 /* handle error */
 …
 }
 else
 for (;;)
 {
 unabto_tick();
 usleep(10); // sleep 10ms
 }
}

An	application	with	just	this	main	function	and	an	empty	client	query	request	handler	can	be	discovered	by	a	
Nabto	client’s	discovery	functionality	on	a	local	network.	To	supply	data	contents	to	the	client,	the	functionality	
described	in	the	next	section	must	be	implemented.	

5.3.1 Enabling	Cryptography	

To	enable	cryptography	for	secure	communication	with	the	client	and	the	basestation,	enable	the	
NABTO_ENABLE_UCRYPTO	option	in	the	unabto_config.h	configuration	file	and	add	the	following	to	the	above	
initialization:	

 nms->id = "myname.demo.nab.to”;
 nms->secureAttach = true;
 nms->secureData = true;
 nms->cryptoSuite = CRYPT_W_AES_CBC_HMAC_SHA256;
 if (gopt_arg(options, 'k', &preSharedKey)) {
 size_t i;
 size_t pskLen = strlen(preSharedKey);
 // read the pre shared key as a hexadecimal string.
 for (i = 0; i < pskLen/2 && i < 16; i++) {
 sscanf_s(preSharedKey+(2*i), "%02hhx", &nms->presharedKey[i]);
 }
 }
 if (!unabto_init(void))
 {
 ...

	

The	additional	lines	enables	cryptograpic	support,	selects	the	AES+SHA256	suite	and	reads	the	preshared	
cryptographic	key	from	somewhere	(commandline	in	this	example)	into	the	nms	struct.	

Application components

NabtoTM	–		NABTO/001/TEN/023				How	to	write	a	uNabto	device	application		 Page	12	of	46	

The	cryptographic	key	to	use	in	the	"*.demo.nab.to"	domain	can	be	obtained	from	the	Nabto	Developer	Portal	at	
https://portal.nabto.com.	If	you	own	your	own	basestation,	you	can	configure	a	dummy	key	for	development	
devices,	typically	consisting	of	just	zeroes.	Or	create	production	cryptographic	keys	using	tools	available	on	the	
basestation.	

5.4 The	client	query	handler	

When	the	uNabto	framework	receives	a	message	with	a	query	request	from	the	client,	the	request	is	immediately	
handed	over	to	the	application’s	“Client	query	request	handler”.		The	handler	will	in	general	examine	the	query,	
execute	the	query	relevant	code	and	create	a	response.	The	client	query	request	handler	can	be	configured	to	
operate	in	different	modes,	depending	on	how	fast	a	query	can	be	processed.	

5.4.1 Synchronous	and	asynchronous	operation	modes	

The	client	query	request	handler	can	operate	in	one	of	these	non-blocking	modes:	

• Synchronous	
The	handler	will	return	with	a	completed	query	response.	This	is	the	default	mode	and	also	the	simplest	
to	implement.		

• Asynchronous	
The	handler	initiates	the	query	processing	and	returns	with	just	a	query	request	accepted	status	code.	
There	is	in	principle	no	upper	time	bound	on	how	long	the	query	processing	may	take,	but	the	various	
timing	issues	on	client	side	should	be	taking	into	consideration.		These	issues	are	typical	timeouts	in	the	
HTML	render	components	(AJAX	request	timeout)	and	a	possible	impatient	user	waiting.	Three	additional	
functions	have	to	be	implemented	in	this	mode	as	explained	later.			

• Synchronous	and	asynchronous	
Depending	on	the	query,	the	handler	will	return	with	a	completed	query	response.		Or	the	handler	may	
initiate	the	query	processing	and	return	with	a	query	request	accepted	status	code.	The	combined	
handler	shares	the	general	properties	of	the	pure	asynchronous	handler,	but	also	handles	queries	where	a	
fast	query	response	is	possible.	

In	all	three	cases,	and	for	event	handlers	in	general,	they	should	return	fast	for	the	reasons	mentioned	in	the	
unabto_tick	section.	

The	"Client	query	request	handler"	callback	invoked	by	the	uNabto	framework	is	called	application_event	
and	is	used	in	all	operation	modes:		

application_event_result application_event(
 application_request* applicationRequest,
 unabto_query_request* queryRequest,
 unabto_query_response* queryResponse)

Parameters:	

Application components

NabtoTM	–		NABTO/001/TEN/023				How	to	write	a	uNabto	device	application		 Page	13	of	46	

applicationRequest	–	Pointer	to	a	structure	with	the	following	relevant	fields:	

uint32_t queryId	–	The	query	identifier	defined	for	the	request	in	the	query	model.	The	query	
model	is	explained	in	The	query	model	section.	
const char* clientId	–	The	user	email	address	given	to	client.	This	value	can	be	used	to	enforce	
access	restrictions	for	specific	requests.		The	usage	is	explained	in	the	Access	Control	section.	
bool isLocal	–	true	if	the	request	came	from	a	client	on	the	same	local	network	as	the	device.	

queryRequest		–		Buffer	containing	the	client	query	request	parameters		(see	below).	

queryResponse - Buffer	to	place	the	applications	query	response	parameters	(see	below).	

The	application	handler	shall	return	one	of	the	following	status	codes:	

AER_REQ_RESPONSE_READY –	The	query	response	is	written	in	the	queryResponse	and	ready	to	be	
sent	to	the	client.	

AER_REQ_ACCEPTED –	Used	in	asynchronous	mode.	The	query	request	is	accepted	and	will	be	
processed	by	the	application.	

AER_REQ_BUSY	–	Used	in	asynchronous	mode.		Signals	that	the	application	can	not	handle	the	request	
now.	The	client	will	see	the	query	request	as	accepted,	but	the	uNabto	framework	will	repeatedly	
call	the	event	handler	with	the	query	request	data	until	a	different	result	code	is	returned.		

AER_REQ_NO_ACCESS –	Used	to	reject	a	query	from	the	client.	The	client	application	will	receive	this	
as	an	ACCESS_DENIED error	code.	It	is	up	to	the	client	to	take	proper	action.	

AER_REQ_INV_QUERY_ID	–	Used	if	the	queryId	is	unknown	to	the	application.	The	client	application	
will	receive	this	as	a	DEVICE_ERR_UNKNOWN_QUERY_ID	error	code.	It	is	up	to	the	client	to	take	
proper	action.	

AER_REQ_NOT_READY, AER_REQ_OUT_OF_RESOURCES –	Used	if	the	application	for	some	reason	
can	not	handle	the	query.	The	client	application	will	receive	these	as	a	MICROSERVER_BUSY	error	
code.		It	is	up	to	the	client	to	take	proper	action.	

	

See	[TEN025]	Section	5.2.3	on	Nabto	Error	Codes	to	see	how	these	error	codes	are	propagated	to	the	client.	

5.5 Synchronous	query	request	handling	

As	stated	previously,	the	synchronous	client	request	handler	can	be	implemented	when	the	query	processing	can	
be	accomplished	within	10	ms.		

To	build	an	application	with	synchronous	query	handling,	follow	these	steps:	

Application components

NabtoTM	–		NABTO/001/TEN/023				How	to	write	a	uNabto	device	application		 Page	14	of	46	

1. Set	the	macro	definition	NABTO_APPLICATION_EVENT_MODEL_ASYNC	to	0	in	the	application	
header	file	unabto_config.h	–	this	is	the	default	setting.	

2. Implement	application	logic.	
3. Let	the	application	client	query	request	handler	process	the	query	and	return	

AER_REQ_RESPONSE_READY	to	tell	uNabto	that	the	query	response	was	generated	successful.		

5.6 Processing	the	query	

How	the	query	requests	and	responses	are	defined	and	related	is	normally	defined	in	a	project	specific	query	
model	on	the	client	side,	essentially	defining	the	public	remote	interface	of	the	device.	This	model	must	be	
meticulously	obeyed	by	the	uNabto	device	application,	especially	with	respect	to	returning	a	correctly	formatted	
response.		The	next	section	provides	a	brief	introduction	to	the	query	model	and	will	be	followed	by	concrete	
examples	on	how	it	is	handled	in	the	uNabto	device	application.	

5.6.1 The	query	model	

The	query	model	is	defined	in	XML	as	specified	by	the	schema:	http://www.nabto.com/unabto/query_model.xsd	

The	query	model	will	briefly	be	explained	through	an	example	model.	This	model	will	also	be	used	in	the	code	
examples	presented	later.	Only	the	query	element	sections	are	shown:	

<query name="get_switch_state.json" id="1">
 <request>
 <parameter name="switch_id" type="uint8"/>
 </request>
 <response>
 <parameter name="switch_state" type="uint8"/>
 </response>
</query>

For	the	uNabto	device	application	developer,	the	relevant	parts	of	the	query	elements	are	the	following:	

• The	query	id	which	identifies	the	query	on	the	uNabto	device.	In	this	example	the	id	is	1.	
• The	parameters	name	their	types	and	their	mutual	ordering	in	the	request	and	response	elements.	

In	this	example	the	query	request	from	the	client	will	contain	a	switch	identifier	of	type	unsigned	8	bit	
integer	and	the	device	is	expected	to	return	a	response	giving	the	state	of	the	switch	in	an	unsigned	8	bit	
integer.	

5.6.2 The	query	parameter	types		

The	following	parameter	types	are	allowed:	

Application components

NabtoTM	–		NABTO/001/TEN/023				How	to	write	a	uNabto	device	application		 Page	15	of	46	

Type	name	 Description	
int8, int16, int32 Signed	integer	with	the	bit	size	specified.	Equivalent	

to	the	stdint	types	int8_t,	int16_t,	int32_t	
	

uint8, uint16, uint32 Unsigned	integer	with	the	bit	size	specified.	
Equivalent	to	the	stdint	types	uint8_t,	uint16_t	and	
uint32_t	
	

raw A	variable	length	binary	string.	The	maximum	length	
is	limited	by	the	uNabto	framework	configuration	
settings.	On	the	device	this	type	is	reperesented	by		
a	list	of	uint8.	

	

The	client	in	our	example	may	also	set	a	descriptive	string	for	the	“switches”	using	a	raw:	

<query name="set_switch_description.json" id="2">
 <request>
 <parameter name="switch_id" type="uint8"/>
 <parameter name="switch_description" type="raw"/>
 </request>
 <response>
 <parameter name="status" type="uint8"/>
 </response>
</query>

In	this	example,	the	device	is	supposed	to	save	the	switch	description	for	later	retrieval.			

The	previous	examples	had	a	static	number	of	request	and	response	parameters	in	the	received	requests	and	in	
the	returned	responses.	The	list	element	opens	up	for	more	dynamical	queries.	

5.6.3 The	query	list	element	

A	list	can	(in	principle)	consist	of	an	unlimited	number	of	parameters	and	even	other	lists.	In	practice	the	list	
length	is	limited	by	the	uNabto	framework	configuration.	

In	this	example,	the	client	can	send	a	list	of	multiple	switch	ids	and	the	device	can	respond	with	a	list	with	multiple	
switch	states	and	descriptions.	Remember	that	the	lists	need	to	be	named	just	like	the	parameters:	

Application components

NabtoTM	–		NABTO/001/TEN/023				How	to	write	a	uNabto	device	application		 Page	16	of	46	

<query name="get_multiple_switch_info.json" id="3">
 <request>
 <list name=”switch_req_list”>
 <parameter name="switch_id" type="uint8"/>
 </list>
 </request>
 <response>
 <list name=”switch_resp_list”>
 <parameter name="switch_state" type="uint8"/>
 <parameter name="switch_description" type="raw"/>
 </list>
 </response>
</query>

5.6.4 Working	with	the	query	model	in	the	application		

The	uNabto	framework	passes	two	buffers	to	the	client	query	request	handler.	The	first	buffer,	the	
queryRequest,	contains	the	query	parameters	in	the	order	and	with	the	type	specified	in	the	query	request	
element	in	the	model.	The	second	buffer,	the	queryResponse,	is	for	returning	the	query	response	parameters	
in	the	correct	order	and	with	the	types	specified	by	the	query	response	element	in	the	model.	

The	uNabto	SDK	has	a	utility	function	library	to	help	in	reading	and	writing	the	query	parameters.	The	parameters	
are	read	and	respectively	written	sequentially	with	these	functions,	and	the	functions	will	keep	track	of	
read/write	positions	and	report	under/overflow.		It	is	highly	recommended	to	use	these	function	to	ensure	
compatibility	with	the	client	and	future	updates	to	the	uNabto	SDK.		

The	usage	of	some	of	these	functions	will	be	demonstrated	in	the	following	examples.	A	detailed	description	of	all	
the	functions	can	be	found	in	the	library	header	file:		unabto/src/unabto/unabto_query_rw.h		

5.6.5 Integral	types	

The	uNabto	SDK	supports	all	the	signed	and	unsigned	integers	in	the	query	model.	

The	utility	functions	reading	integers	query	request	parameters	are:	

• unabto_query_read_int8

• unabto_query_read_uint8

• unabto_query_read_int16

• unabto_query_read_uint16

• unabto_query_read_int32

• unabto_query_read_uint32

Application components

NabtoTM	–		NABTO/001/TEN/023				How	to	write	a	uNabto	device	application		 Page	17	of	46	

The	utility	functions	writing	integers	query	response	parameters	are:	

• unabto_query_write_int8

• unabto_query_write_uint8

• unabto_query_write_int16

• unabto_query_write_uint16

• unabto_query_write_int32

• unabto_query_write_uint32

	

Since	the	semantics	is	very	similar,	only	the	int8	variant	will	be	described	briefly	here:	

bool unabto_query_read_int8(unabto_query_request *queryRequest, int8_t *num)

Copies	an	8	bit	integer	from	the	current	read	position	in	the	query	request	buffer,	to	a	position	given	by	the	
supplied	integer	pointer.	

E.g.:		

int8_t number;
if (unabto_query_read_int8(queryRequest, &number))
{
 printf(”Hello my number is %d”, number);
}

If	the	value	for	some	reason	is	unwanted,	the	passing	of	a	NULL	pointer	as	integer	pointer	argument	will	skip	the	
parameter.	

Writing	is	similar	simple	using	the	int8	write	function:	

bool unabto_query_write_int8(unabto_query_response *queryResponse, int8_t
num)

Copies	an	8	bit	integer	into	the	query	response	buffer	at	the	current	write	position.	

E.g.:	

if (!unabto_query_write_int8(queryResponse, 42))
 … /* error handling */

Adding	the	pieces	together,	a	simple	synchronous	event	handler	for	the	first	query	in	our	example	model	(without	
error	handling)	could	look	like	this:	

Application components

NabtoTM	–		NABTO/001/TEN/023				How	to	write	a	uNabto	device	application		 Page	18	of	46	

application_event_result application_event(
 application_request* applicationRequest,
 unabto_query_request* queryRequest,
 unabto_query_response* queryResponse)
{
 application_event_result result = AER_REQ_NOT_READY;
 switch (applicationRequest->queryId)
 {
 case 1 :
 {
 uint8_t switchId, switchtState;
 unabto_query_read_uint8(queryRequest, &switchId);
 // Call some application function to get the state
 switchState = getSwitchState(switchtId);
 unabto_query_write_uint8(queryResponse, switchState);
 result = AER_REQ_RESPONSE_READY;
 break;
 }
 case 2 :
 …
 }
 return result;
}

5.6.6 The	raw	type		

On	the	device,	the	Raw	type	from	the	query	model	is	handled	as	a	list	of	uint8_t	elements	(lists	are	described	in	
detail	below).		The	maximum	length	depends	on	the	value	of	the	NABTO_RESPONSE_MAX_SIZE	and	request	
ditto	size	configuration	macros	–	see	the	section	on	calculating	the	query	request/response	size.		

Passing	floating	point	numbers	as	text	strings	via	a	list	of	uint8_t	is	the	recommended	platform	independent	way	
to	do	so.		

If	strings	are	received	from	the	client	and	perceived	as	so	on	the	device,	it	is	up	to	the	application	to	convert	the	
list	to	a	C	sting.	If	the	raw	is	not	going	to	be	saved	prior	to	generation	of	the	response,	a	simple	trick	is	to	waste	a	
little	bandwidth	and	let	the	client	add	the	terminating	zero	to	the	raw,	thereby	avoiding	allocation	of	space	for	the	
the	uin8_t	list	and	the	terminating	zero.	

For	reading	a	uint8_t	list	from	the	query	request	buffer	use	the	function:	

bool unabto_query_read_uint8_list(unabto_query_request *queryRequest,
 uint8_t **listData, uint16_t *listLength)

The	function	does	not	copy	the	“listData”,	but	just	passes	a	pointer	to	them.	If	the	“list	data”	is	not	wanted,	it	can	
just	be	skipped	by	passing	a	NULL	pointer.	The	length	is	returned	in	the	listLength	parameter.		

E.g.:	

Application components

NabtoTM	–		NABTO/001/TEN/023				How	to	write	a	uNabto	device	application		 Page	19	of	46	

uint8_t *listData;
uint16_t listLength;
if (unabto_query_read_uint8_list(queryRequest, &listData, &listLength))
{
 … /* do something with data */
}

Example	with	parameter	skip:	

unabto_query_read_uint8_list(queryRequest, NULL, NULL);

The	function	for	writing	a	uin8_t	list	works	similar	to	the	integral	writing	functions:		

bool unabto_query_write_uint8_list(unabto_query_response *queryResponse,
 uint8_t *listData, uint16_t listLength)

The	“list	data”	given	by	listData	and	with	a	length	of	listLength	is	written	at	the	current	position	in	the	
query	response	buffer.	

E.g.:		

char *data = ”The red road rabbit rode rattlesnakes risking retribution”;
uint16_t len;
if (!unabto_query_write_uint8_list(queryResponse, (uint8_t*)data,
 sizeof(data)-1))
{
 … /* error handling */
}

A	list	of	uint8	requires	at	least	two	bytes	for	the	length,	plus	the	space	for	the	number	of	bytes	in	the	raw.		

5.6.7 Lists		

By	using	lists,	the	query	request/response	structure	becomes	more	dynamic.	The	equivalent	of	the	list	in	C	is	a	
variable	length	array	of	structs.		A	list	element	can	be	any	sequence	of	the	other	parameter	types	and	other	lists.	
The	list	length	is	in	practice	restricted	by	the	request/response	buffer	size	configuration	parameters	and	the	MTU	
of	the	packet	carrier.	

In	contrary	to	the	other	query	buffer	read/write	functions,	the	functions	for	list	handling	are	made	asymmetric.	
This	was	required	since	lists	can	be	nested	and	the	length	should	be	allowed	to	be	unknown	until	all	list	elements	
have	been	written.		

Reading	a	list	is	straight	forward:	

1. Start	by	reading	the	number	of	elements	
2. For	each	element	use	the	other	query	processing	functions	to	process	it.	

The	list	length	is	read	by	the	following	function:	

bool unabto_query_read_list_length(unabto_query_request *queryRequest,
 uint16_t *list_length)

Application components

NabtoTM	–		NABTO/001/TEN/023				How	to	write	a	uNabto	device	application		 Page	20	of	46	

E.g.:	

uint16_t len;
if (unabto_query_read_list_length(queryRequest, &len))
 printf(”The length of the list is: %d\n”, len);

A	list	in	a	query	response	is	generated	by	following	these	steps:	

1. Initialized	a	list	context	and	save	it	for	the	finalization	of	the	list.	
2. Write	each	element	by	using	the	other	query	response	writing	functions.	
3. Finalize	the	list.	

For	initializing	a	list,	the	following	function	is	used:		

bool unabto_query_write_list_start(unabto_query_response *queryResponse,
 unabto_list_ctx_t *list_ctx)

The	returned	list_ctx	are	saved	for	the	finalization	of	the	list	and	passed	to	the	following	function	after	all	list	
elements	have	been	written:	

bool unabto_query_write_list_end(unabto_query_response *queryResponse
 unabto_list_ctx_t *list_ctx,
 uint16_t list_length)

The	number	of	elements	written	is	passed	to	the	list_length	parameter.	

Simple	list	example	from	the	example	model	without	error	handling:	

Application components

NabtoTM	–		NABTO/001/TEN/023				How	to	write	a	uNabto	device	application		 Page	21	of	46	

…
case 3 :
{
 uint16_t i, listLength;
 if (unabto_query_read_list_lenght(&listLength))
 {
 uint8_t ids[listLength]; // Unsafe and requires C99!
 unabto_list_ctx_t listCtx;
 for (i = 0; i < listLength; i++)
 unabto_query_read_uint8(queryRequest, &ids[i]);

 unabto_query_write_list_start(queryResponse, &listCtx);
 for (i=0; i < listLength; i++)
 {
 char *desc;
 uint8_t switchtState;
 switchState = getSwitchState(ids[i]);
 desc = getSwitchDescription(ids[i]);
 unabto_query_write_uint8(queryResponse, switchStatus);
 unabto_query_write_uint8_list(queryResponse, (uint8_t*)desc,
 strlen(desc));
 }
 unabto_query_write_list_end(queryResponse, &listCtx, listLength);
 result = AER_REQ_RESPONSE_READY;
 }
 break;
}
 …

A	List	requires	at	least	two	bytes	for	the	length,	plus	the	space	required	for	all	the	list	elements.	

	

The	AppMyProduct	Heat	Pump	stub1	contains	an	example	of	list	handling,	see	the	functions	copy_string	and	
write_string	for	reading	and	writing	lists,	respectively	in	unabto_application.c.	

5.7 Asynchronous	request	handling	

When	the	query	processing	is	expecting	to	last	for	more	than	ten	milliseconds,	the	application	event	handler	must	
operate	in	asynchronous	mode.		

Operating	in	this	mode,	the	application	event	handler	returns	with	an	AER_REQ_ACCEPTED,	where	after	the	
uNabto	framework	repeatedly	will	call	the	application	implemented	function:	application_poll_query.	
When	this	function	returns	true,	the	uNabto	framework	will	retrieve	the	result	by	calling	the	application	
implemented	function	application_poll.		

																																																													

1	https://github.com/nabto/appmyproduct-device-stub	

Application components

NabtoTM	–		NABTO/001/TEN/023				How	to	write	a	uNabto	device	application		 Page	22	of	46	

The	uNabto	Framwork	may	drop	the	request	for	various	reasons	by	calling	the	application	implemented	function	
application_poll_drop.	

To	build	an	application	with	asynchronous	query	handling,	follow	these	steps:	

1. Set	the	macro	definition	NABTO_APPLICATION_EVENT_MODEL_ASYNC	to	1	in	the	application	
header	file	unabto_config.h.	

2. Implement	application	logic.	
3. Let	the	application	event	handler	initiate	processing	and	return	AER_REQ_ACCEPTED	to	tell	the	client	

that	the	query	processing	has	started.		
4. Implement	the	following	three	handlers:	

a. application_poll_query
b. application_poll
c. application_poll_drop

Note!	 Multiple	client	queries	can	be	active	concurrently.	For	this	reason,	the	application	event	handler	must	
hold	the	applicationRequest	parameter,	passed	on	invocation,	as	a	reference	to	the	request	and	pass	it	on	
to	the	application	poll	query	function.	

In	the	following	code	examples,	four	application	functions,	for	retrieving	the	switch	state	from	a	slow	device,	will	
be	referenced:	sendSwitchStateRead, receiveSwitchStateReading,
isSwitchStateReadingReceived, dropSwitchStateProcessing; for	respectively	sending,	
receiving,	probing	and	dropping	the	IO	request.		

	An	asynchronous	query	request	handler	for	the	first	query	in	the	example	query	model	may	look	like	this:	

Application components

NabtoTM	–		NABTO/001/TEN/023				How	to	write	a	uNabto	device	application		 Page	23	of	46	

/* Only a single request is allowed to execute in these examples */
static application_request* currentApplicationRequest=NULL;

application_event_result application_event(
 application_request* applicationRequest,
 unabto_query_request* queryRequest,
 unabto_query_response* queryResponse)
{
 application_event_result result = AER_REQ_NO_QUERY_ID;

 if (NULL != currentApplicationRequest)
 return AER_REQ_BUSY; /* EXIT */

 switch (applicationRequest->queryId)
 {
 case 1 :
 {
 uint8_t switchId;
 unabto_query_read_uint8(queryRequest, &switchId);
 sendSwitchStateRead(switchtId);

 /* Block for other requests while executing this */
 currentApplicationRequest = applicationRequest;

 result = AER_REQ_ACCEPTED;
 break;
 }
 case 2 :
 …
 }
 return result;
}

The	two	things	to	really	differentiate	this	handler	from	the	previous	example	with	the	synchronous	handler,	is	the	
absence	of	query	response	buffer	write	statements	and	the	handler’s	return	value	AER_REQ_ACCEPTED.	

The	uNabto	framework	will	regularly	probe	the	query	response	processing	progress	by	calling	the	application	
implemented	function:	

bool application_poll_query(application_request** applicationRequest)

Parameters:	

applicationRequest	–	Set	this	to	the	applicationRequest	obtained	from	the	
application_event	handler	for	which	the	application	wants	to	convey	progress	status.	

The	application	poll	query	handler	returns	true	if	the	query	response	is	ready	to	be	delivered	to	the	client	or	false	
otherwise.	

Asynchronous	example	continued:	

Application components

NabtoTM	–		NABTO/001/TEN/023				How	to	write	a	uNabto	device	application		 Page	24	of	46	

bool application_poll_query(application_request** applicationRequest)
{
 /* Tell the uNabto framework for which request the status is returned.
 Here we only got one possibility – the last pending.*/
 *applicationRequest = currentApplicationRequest;
 return isSwitchStateReadingReceived();
}

When	the	application_poll_query	returns	true,	the	uNabto	framework	will	retrieve	the	query	response	
by	calling	the	application	implemented	function:	

application_event_result application_poll(
 application_request* applicationRequest,
 unabto_query_request* queryRequest,
 unabto_query_response* queryResponse)

Parameters:	

applicationRequest	–	The	applicationRequest	returned	by	the	application	
application_poll_query		function.	

queryRequest		–	Buffer	containing	the	client	query	request	parameters.	The	usage	is	similar	to	the	
application_event	handler.	

queryResponse –	Buffer	to	place	the	applications	query	response	parameters.	The	usage	is	similar	to	
the	application_event	handler.	

The	application	poll	handler	returns	the	same	type	of	status	code	as	the	application_event	handler	does.	In	
normal	cases	this	will	be	the	AER_REQ_RESPONSE_READY	return	code.	

Asynchronous	example	continued:	

application_event_result application_poll(
 application_request* applicationRequest,
 unabto_query_request* queryRequest,
 unabto_query_response* queryResponse)
{
 uint8_t switchtState;
 /* here we assume that:
 applicationRequest == currentApplicationRequest
 */

 switchtState = receiveSwitchStateReading();
 unabto_query_write_uint8(queryResponse, switchStatus);
 /* Allow new requests to be processed*/
 currentApplicationRequest = NULL;
 return AER_REQ_RESPONSE_READY;
}

Whenever	an	error	occurs	within	the	uNabto	framework	during	processing	of	a	request	in	the	application,	the	
uNabto	framework	will	call	the	following	application	implemented	function	to	drop	further	actions	and	let	the	
application	clean	up	any	internal	state:		

Application components

NabtoTM	–		NABTO/001/TEN/023				How	to	write	a	uNabto	device	application		 Page	25	of	46	

void application_poll_drop(application_request* applicationRequest)

Parameters:	

applicationRequest	–	The	applicationRequest	that	is	dropped.	

A	the	typical	reason	for	this	function	to	be	called,	is	the	loss	of	connection	to	the	client.	

Asynchronous	example	continued:	

void application_poll_drop(application_request* applicationRequest)
{
 /* Call an application function to drop the switch state request
 and clean up */
 dropSwitchStateProcessing();
 /* Prepare for a new request */
 currentApplicationRequest = NULL;
}

5.8 General	application	development	notes	

There	are	three	important	issues	to	observe	before	starting	on	the	application	development:	

1. For	memory	space	efficency	the	queryRequest	and	queryResponse	shares	the	same	memory	location.	
It	is	therefore	in	general	a	good	idea	to	process	all	query	request	parameters	before	writing	the	query	
response	parameters.	

2. All	parameters	specified	by	the	query	model’s	query	response	section	must	be	written	in	the	response.	
Likewise	the	client	is	required	to	write	all	the	parameters	specified	by	the	query	model’s	query	request	
section.	

3. All	parameters	in	the	largest	query	response	must	fit	with	in	the	buffer	space	defined	by	the	
NABTO_RESPONSE_MAX_SIZE	macro.	The	parameters	are	packed	in	the	various	buffers,	and	by	using	
the	space	requirement	given	for	each	parameter	type,	the	space	requirement	is	simple	to	calculate.	

5.9 Query	request/response	size	platform	configuration	

Both	a	query	request	and	a	query	response	message	must	be	contained	within	a	single	transfer	unit	on	the	data	
carrier	layer	i.e.	the	MTU	for	the	data	carrier	must	be	respected.	Furthermore	the	various	headers	for	transport,	
control	and	encryption	will	require	approx.	100	bytes.	

For	most	devices	connected	to	an	Ethernet,	a	useful	query	request/response	payload	size	is	about	1310	bytes.	

Calculating	the	size	of	a	query	request/response	is	quite	simple	since	all	query	parameters	are	packed	and	the	size	
of	each	parameter	size	is	easily	found.	

Streaming

NabtoTM	–		NABTO/001/TEN/023				How	to	write	a	uNabto	device	application		 Page	26	of	46	

The	integral	parameter	type	requires	the	space	indicated	by	the	parameter	type	suffix.	E.g.	a	uint32	parameter	
requires	four	bytes.	Four	uint32	requires	each	32	bits	giving	a	total	space	requirement	of	128	bits	i.e.	16	bytes.	

The	raw	parameter	type	requires	at	least	two	bytes	(the	length)	plus	the	size	of	the	raw	data.	

The	list	parameter	type	requires	at	least	two	bytes	(the	element	count)	plus	the	size	of	each	list	element.	

E.g.:		
Given	a	list	element	with	two	uint32,	a	list	with	ten	elements	will	require:		
2	+	10	*	(4	+	4)	=	82	bytes.		

With	a	NABTO_REQUEST_MAX_SIZE set to 1310	bytes,	the	client	can	send:		
(1310	-	2)	/	(4	+	4)	~=	163	elements	of	this	type.	

When	the	calculations	for	the	requests	and	responses	and	has	been	completed	do	the	following:	

• Set	the	NABTO_REQUEST_MAX_SIZE macro	to	the	calculated	maximum	query	request	size.	
• Set	the	NABTO_RESPONSE_MAX_SIZE macro	to	the	calculated	maximum	query	response	size.	

6 Streaming	
The	uNabto	streaming	implementation	can	be	used	to	create	a	reliable	sequential	stream	of	bytes	between	a	
Nabto	Client	application	and	a	uNabto	device.	The	implementation	mimicks	TCP	behavior	so	it	is	possible	to	think	
of	uNabto	streaming	as	TCP/Nabto	instead	of	e.g.	TCP/IP.		

The	Nabto	Streaming	implementation	features	selective	acknowledge	and	congestion	control	which	together	
gives	the	ability	for	high	performance	streaming	over	congested	network	connections.	This	could	e.g.	be	HD	video	
via	an	ADSL	connection.	

6.1 Stream	Demo	Application	

We	provide	a	stream	echo	demo	application.	It	can	be	found	in	the	uNabtio	SDK	under	
unabto/demo/stream_echo.	This	simple	demo	application	can	be	used	to	get	a	quick	overview	of	uNabto	
streaming.	An	echo	client	can	be	found	in	Nabto	Toolbox	which	can	be	downloaded	from	nabto.com.	The	program	
nterm.exe	in	the	.NET	Nabto	CLI	Utils	x	can	be	used	to	connect	to	the	echo	server.	nterm	can	be	used	with	these	
parameters:	nterm.exe <echo server name> -s echo –e,	it	will	open	a	stream	to	the	echo	server	
with	the	name	<echo server name>.	

	

Streaming

NabtoTM	–		NABTO/001/TEN/023				How	to	write	a	uNabto	device	application		 Page	27	of	46	

6.2 Streaming	Usage	

Streaming	can	be	enabled	and	disabled	in	unabto_config.h	by	the	configuration	option	
NABTO_ENABLE_STREAM.	

When	a	new	stream	is	opened	the	framework	will	call	the	function	unabto_stream_accept	which	has	to	be	
implemented	by	the	customer	application.	After	a	stream	has	been	accepted	it	is	possible	to	read	and	write	from	
it.	The	application	owns	the	stream.	Hence,	the	application	is	required	to	release	the	stream	when	finished	using	
it.	

Lifecycle	of	a	uNabto	stream:	

	

• unabto_stream_accept 	is	called	and	the	stream	is	accepted.	
• unabto_stream_read,	unabto_stream_ack	and	unabto_stream_write	are	called	multiple	

times.	
• After	reading	and	writing	has	ended,	the	stream	is	closed	using	unabto_stream_close.	
• When	the	stream	is	closed	unabto_stream_release	is	called,	such	that	the	stream	resource	is	

freed.	

6.2.1 New	streams	

When	the	framework	has	a	new	stream	ready	for	the	application	the	function	
unabto_stream_accept(unabto_stream* stream)	is	called.	This	function	shall	be	implemented	by	
the	application	developer.	The	application	is	required	to	handle	all	streams	even	if	they	do	not	intent	to	read	or	
write	to	them,	it	still	has	to	close	and	release	them.	When	a	new	stream	is	seen	it	can	immediately	be	read	from	
and	written	on.		

6.2.2 Reading	from	a	stream	

The	function	size_t unabto_stream_read(uanbto_stream* stream, uint8_t** buf,
unabto_stream_hint* hint)	is	used	to	read	from	a	stream.		It	returns	the	number	of	bytes	available.		

	

If	it	returns	0	the	status	hint	can	be	read	to	get	the	reason	why	nothing	is	read.	If	the	hint	is	
UNABTO_STREAM_HINT_OK	it	simply	means	that	there	was	no	bytes	to	be	read.		

	

When	bytes	has	been	consumed	the	application	should	call	bool
unabto_stream_ack(unabto_stream* stream, const uint8_t* buf, size_t used,

Streaming

NabtoTM	–		NABTO/001/TEN/023				How	to	write	a	uNabto	device	application		 Page	28	of	46	

unabto_stream_hint* hint) to	acknowledge	towards	the	framework	that	the	bytes	has	been	consumed	
and	they	now	can	be	freed.		

	

It	is	not	necessary	to	acknowledge	all	the	bytes	unabto_stream_read	returns,	but	they	have	to	be	
acknowledged	sequentially.	If	not	all	bytes	have	been	acknowledged,	the	rest	of	the	bytes	will	be	available	the	
next	time	unabto_stream_read	is	called.	

6.2.3 Writing	to	a	stream	

The	function	size_t unabto_stream_write(unabto_stream* stream, uint8_t* buf,
size_t size, unabto_stream_hint* hint)	writes	data	to	a	stream.		

	

If	0	is	returned	hint	tells	why	it	was	zero.	If	hint	is	0	and	it	returns	0	it	simply	means	that	no	more	data	can	be	
written	to	the	stream	at	the	moment.	Else	it	returns	the	number	of	bytes	which	was	written	to	the	stream.	

6.2.4 Closing	a	stream	

A	stream	is	closed	with	the	function	bool unabto_stream_close(unabto_stream* stream).	If	this	
function	returns	false	it	means	that	the	stream	has	not	yet	been	closed	and	you	have	to	poll	it	later	until	it	returns	
true.	When	unabto_stream_close	returns	true	the	stream	can	be	safely	released.	

6.2.5 Releasing	a	stream	

The	last	thing	to	do	with	a	stream	is	releasing	its	resources.	After	void
unabto_stream_release(unabto_stream* stream)	has	been	called	on	a	stream	no	further	
processing	will	be	done	for	this	stream.	

6.2.6 Stream	Events	

Every	time	an	event	happens	on	a	stream	the	function	void unabto_stream_event(unabto_stream*
strean, unabto_stream_event_type event)	is	called,	this	way	the	application	can	be	notified	when	
the	state	of	a	stream	changes.		

	

If	you	do	not	want	this	behavior	the	configuration	option	NABTO_ENABLE_STREAM_EVENTS	can	be	set	to	0	
such	that	you	do	not	have	to	implement	a	function	to	handle	these	events.	

Access Control

NabtoTM	–		NABTO/001/TEN/023				How	to	write	a	uNabto	device	application		 Page	29	of	46	

6.3 Stream	Configuration	

In	unabto_config_defaults.h	several	streaming	related	configuration	options	are	described.	They	can	be	
used	to	tweak	the	performance	and	memory	requirements	for	the	streaming.	Generally	better	performance	and	
more	concurrent	streams	requires	more	memory	so	for	ressource	constrained	devices	it	makes	sense	to	use	some	
time	to	tweak	these	options	for	the	specific	application.	

To	use	the	Streaming	implementation,	define		NABTO_ENABLE_MICRO_STREAM to	1.

	

7 Access	Control	
Access	control	can	be	used	to	restrict	access	to	a	device	in	general	or	for	specific	queries.	The	identity	of	the	client	
(authenticated	by	the	basestation),	is	passed	to	the	uNabto	framework	in	the	connection	request	–	typically	this	is	
an	email	address.	If	the	client	is	allowed	by	the	uNabto	device	application	to	connect,	the	uNabto	framework	will	
pass	the	user	identity	in	every	succeeding	call	to	the	client	query	request	handler,	this	allows	for	query	level	
access	restriction.	

It	is	up	to	the	application	to	store	and	manage	identities	(email	addresses)	and	to	impose	and	manage	access	
rules.	The	uNabto	SDK	provides	a	utility	module	called	ACL	in	the	module	directory	to	help	managing	the	email	
addresses.	

7.1 Connection	level	access	control	

When	a	client	tries	to	connect	to	a	device,	the	application	has	the	ability	to	reject	the	connection	request	directly.	
The	client	will	then	receive	an	access	error	notification	and	any	related	resources	in	uNabto	framework	will	be	
released.	

To	implement	this	first	level	of	access	control,	follow	these	steps:	

• Implement	functionality	to	handle	the	allowed	email	addresses.		
Special	queries	may	be	implemented	to	handle	email	addresses	storage/removal	etc.		

• Set	the	macro:	NABTO_ENABLE_CONNECTION_ESTABLISHMENT_ACL_CHECK	to	1	in	
unabto_config.h	:		

• Implement	the	client	access	event	handler	function:		allow_client_access				

The	client	access	handler	to	implement	by	the	application:	

bool allow_client_access(nabto_connect* connection)

Parameters:	

Access Control

NabtoTM	–		NABTO/001/TEN/023				How	to	write	a	uNabto	device	application		 Page	30	of	46	

connection	–	Structure	where	the	following	two	fields	are	relevant	for	the	topic:	

char* clientId	–	The	user	email	address	given	to	client.	
bool isLocal	–	True	if	the	request	came	from	a	client	on	the	same	local	network	as	the	device.	This	
enables	restrictions	based	whether	the	client	is	“local”	or	not.	

The	handler	should	return	true	if	the	email	address	passed	from	the	client	are	acceptable	for	the	uNabto	device	
application,	false	otherwise.	

Simple	connection	access	control	example:	

const char* secretId = ”secret@mycompany.com”;
bool allow_client_access(nabto_connect* connection)
{
 return 0 == strcmp(connection->clientId, secredId);
}

7.2 Query	level	access	control	

When	the	application	event	handler	is	invoked	by	the	uNabto	framework,	the	user	email	address,	on	the	client	
side,	is	passed	to	the	client	query	request	handler.	This	allow	for	very	fine	grained	access	control	on	the	device.	To	
list	up	a	few	access	restriction	possibilities:	

• Specific	queries	for	specific	users.	
• Based	on	the	supplied	query	parameters,	specific	queries	for	specific	device	resources	etc.	
• Specific	queries	for	specific	non	local	users.	

To	implement	this	level	of	access	control,	follow	these	basic	steps:	

• Implement	functionality	to	handle	the	allowed	email	addresses.	
Special	queries	may	be	implemented	to	handle	email	addresses	storage/removal	etc.		

• Examine	the	two	fields:	clientId	and	isLocal	in	the	applicationRequest	struct	parameter	passed	to	the	
client	query	request	handler	by	the	uNabto	framework.	

• Let	the	client	query	request	handler	return	AER_REQ_NO_ACCESS	if	access	restrictions	are	violated.	

Simple	query	access	control	example:	

Special event handlers

NabtoTM	–		NABTO/001/TEN/023				How	to	write	a	uNabto	device	application		 Page	31	of	46	

static const char* unwantedId = ”hacker@anonymous.org”;

application_event_result application_event(
 application_request* applicationRequest,
 unabto_query_request* queryRequest,
 unabto_query_response* queryResponse)
{
 application_event_result result;

 switch (applicationRequest->queryId)
 {
 case 1 :
 {
 uint8_t switchId, switchtState;
 unabto_query_read_uint8(queryRequest, &switchId);
 /* We don’t want everybody to know the state
 of the switch with id 42 */
 if (42 == switchId &&
 0 == strcmp(applicationRequest->clientId, unwantedId))
 result = AER_REQ_NO_ACCESS
 else
 {
 /* Call an application function to get the state */
 switchState = getSwitchState(switchtId);
 unabto_query_write_uint8(queryResponse, switchState);
 result = AER_REQ_RESPONSE_READY;
 }
 break;
 }
 case 2 : /* with query level access control */
 {
 uint16_t i,listLength;
 if (0 == strcmp(applicationRequest->clientId, unwantedId))
 result = AER_REQ_NO_ACCESS
 else
 {
 /* process the query … */
 result = AER_REQ_RESPONSE_READY;
 }
 }
 }
 return result;
}

8 Special	event	handlers	
In	addition	to	the	client	query	request	and	allow_client_access	events	the	uNabto	framework	may	be	configured	
to	notify	the	application	for	other	event	types.	

The log printing framework

NabtoTM	–		NABTO/001/TEN/023				How	to	write	a	uNabto	device	application		 Page	32	of	46	

8.1 Getting	a	UTC	time	stamp	from	the	basestation	

When	the	uNabto	framework	and	the	basestation	exchanges	awareness	messages,	the	current	time	on	the	
basestation	is	passed	to	the	uNabto	framwork	from	the	basestation.		In	a	standard	basestation	setup,	this	
message	exchange	occurs	approximately	every	10	seconds	

The	time	stamp	can	be	read	by	implementing	the	setTimeFromGSP	event	handler:				

void setTimeFromGSP(uint32_t stamp);

Parameters:	

stamp	–	UTC	time	stamp	from	basestation.	

Due	to	basestation	and	network	load	the	time	will	lag	with	respect	to	the	time	source	on	the	basestation.	Use	
other	time	sources	if	high	time	precision	is	required,	e.g.	NTP.		

Note!		 By	default	the	handler	has	to	be	implemented.	If	the	functionality	is	unwanted,	the	
NABTO_SET_TIME_FROM_ALIVE	macro	must	be	defined	to	0	in	the	unabto_config.h	configuration	
file.	

8.2 Monitoring	the	basestation	connection	status	

The	uNabto	framework	on	the	device	will	by	default	have	a	connection	with	the	basestation,	this	allows	for	
remote	clients	to	connect	to	the	device.	If	this	feature	is	important,	it	is	possible	for	the	application	to	monitor	the	
connection	status,	and	for	example	signal	the	status	via	a	LED,	by	implementing	the	function:	

void unabto_attach_state_changed(nabto_state state);

Parameters:	

state –	The	most	interesting	state	for	the	application	is	NABTO_AS_ATTACHED.	Every	other	state	
indicates	that	the	device	is	not	connected	with	the	basestation.	

Enabled	by	defining	the	macro:	NABTO_ENABLE_STATUS_CALLBACKS	to	1.	

9 The	log	printing	framework	
The	uNabto	framework	provides	a	fine	grained	log	printing	framework,	where	log	printing	can	be	controlled	by	
compile	time	“severity”	level	configuration	settings.	The	uNabto	framework	itself	uses	the	log	printing	framework	
extensively	for	logging	various	status	messages.	

The log printing framework

NabtoTM	–		NABTO/001/TEN/023				How	to	write	a	uNabto	device	application		 Page	33	of	46	

Not	all	ports	of	uNabto	supports	log	printing,	to	figure	out	whether	log	printing	is	supported	or	not,	the	macro	
NABTO_LOG_BASIC_PRINT	definition	could	be	examined.	On	simple	platforms	this	macro	is	often	defined	with	an	
empty	replacement	token.	

Log	printing	is	by	default	enabled	by	the	application	configurable	macro	NABTO_ENABLE_LOGGING definition.		

The	following	subsections	will	give	a	brief	overview	of	the	capabilities	–	consult	the	document:	“uNabto	SDK	–	
Configuring	and	compiling”	for	more	details.	

9.1 Printing	

All	the	log	commands	have	a	suffix	describing	the	“severity”	level:		

• NABTO_LOG_FATAL
• NABTO_LOG_ERROR
• NABTO_LOG_WARN
• NABTO_LOG_INFO
• NABTO_LOG_DEBUG
• NABTO_LOG_TRACE

The	parameters	to	the	log	commands	are	compatible	with	the	stdio	printf	function.	To	obtain	simple	multiple	
compiler	support,	by	avoiding	variadic	macro	definitions,	the	parameter	list	must	be	enclosed	in	parentheses.	

For	example:	

NABTO_LOG_INFO((”The meaning of life is: %d”, 42));

9.2 Controlling	log	printing	by	severity	

The	various	severity	logging	statements	can	be	enabled	by	defining	the	NABTO_LOG_SEVERITY_FILTER	mask	
macro	definition	to	be	the	or’ing	of	the	severity	macro	definition	for	each	log	severity.		The	macro	names	for	
these	are	predefined	with	the	NABTO_LOG_SEVERITY_	prefix	followed	by	the	aforementioned	suffixes.	

For	example	the	following	definition	will	ensure	that	only	the	NABTO_LOG_FATAL	and	NABTO_LOG_ERROR	
statements	are	executed:	

#define NABTO_LOG_SEVERITY_FILTER (NABTO_LOG_SEVERITY_FATAL \
 | NABTO_LOG_SEVERITY_ERROR)

Example	for	info	logging	only:	

#define NABTO_LOG_SEVERITY_FILTER NABTO_LOG_SEVERITY_INFO

uNabto helper modules

NabtoTM	–		NABTO/001/TEN/023				How	to	write	a	uNabto	device	application		 Page	34	of	46	

Logging	may	also	be	specified	by	setting	to	a	“severity”	level.	The	logging	severity	level	macros	are	defined	
likewise	the	other	macros,	beginning	with	a	NABTO_LOG_SEVERITY_LEVEL_	prefix	followed	by	the	
aforementioned	suffixes.	

E.g.:	

NABTO_LOG_SEVERITY_LEVEL_WARN

Each	level	will	include	all	the	other	levels	in	this	increasing	verbosity	order:	FATAL,	ERROR,	WARN,	INFO,	DEBUG,	
TRACE	i.e.	TRACE	includes	all	the	other	levels.	

Note!		 A	short	cut	to	log	all	is	to	define	the	symbol:	NABTO_LOG_ALL			

10 uNabto	helper	modules	
Nabto	provides	a	set	of	small	application	level	modules	to	be	used	in	uNabto	device	applications,	described	
below.	The	modules	can	be	found	in	the	uNabto	SDK	folder:	/unabto/src/modules	

10.1 ACL	

This	module	is	primarily	intended	for	maintaining	an	Access	Control	List.	The	module	helps	in	the	administration	
of	a	user	list	by	providing	the	following	functionality:	add/remove/lookup	a	user,	traversal	of	the	user	list	and	
obtaining	the	number	of	users	in	the	list.	A	32	bit	integer	is	associated	with	each	user	to	aid	in	the	creation	of	
access	right	levels.	The	module	uses	the	Configuration	Store	module	for	data	persistence.	

10.2 Configuration	Store	

This	module	provides	a	uniform	interface	to	a	persisted	storage,	where	data	like	configuration	data	may	be	
maintained.	The	module	does	not	ensure	transactional	storage	operation	but	offers	data	integrity	validation.	The	
module	has	abstraction	for	Microship	PIC18	internal	flash,	POSIX	compatible	file	IO	and	RAM	(for	testing).	The	ACL	
module	depends	on	this	module.	

11 uNabto	platform	adapters	
A	uNabto	platform	adapter	is	made	up	of	the	three	shaded	components	shown	in	this	figure:		

uNabto platform adapters

NabtoTM	–		NABTO/001/TEN/023				How	to	write	a	uNabto	device	application		 Page	35	of	46	

Native	Platform

uNabto	framework

uNabto	device	application

UDP	stack	adapterTime	adapterDNS	adapter

	

The	three	adapters	create	a	uniform	interface	for	the	uNabto	framework	to	the	Native	Platform:	A	DNS	resolver,		
time	functionality	and	a	UDP	network	layer.		

The	uNabto	SDK	contains	adapter	source	code	for	the	components	various	native	platforms:	

Arduino,	Microship	PIC	18,	Freescale	MQX,	Unix,	Microsoft	Windows.	

These	are	a	good	starting	point	for	new,	customer	adapters	if	porting	to	an	unsupported	platform.	

uNabto platform adapters

NabtoTM	–		NABTO/001/TEN/023				How	to	write	a	uNabto	device	application		 Page	36	of	46	

11.1 Porting	uNabto	-	Creating	a	new	uNabto	Platform	Adapter	

To	explain	how	to	port	to	a	new	platform,	a	new	uNabto	platform	adapter	will	be	created	for	the	Linux	platform,	
the	code	can	be	found	in	unabto/demo/porting.	

A	uNabto	platform	adapter	is	the	code	the	uNabto	Core	uses	for	network	communication,	time	handling,	DNS	
resolving,	logging	and	randomness.	The	standard	uNabto	SDK	already	provides	modules	for	many	platforms,	
located	in	the	modules	folder	in	the	source	tree.		

All	the	functionality	in	this	description	is	also	available	as	uNabto	modules	and	the	implementation	using	modules	
can	be	found	under	the	official	Unix	platform	in	the	platforms/unix	folder	in	the	uNabto	source.	

11.1.1 Overall	Structure	

The	overall	structure	of	a	uNabto	platform	adapter	consists	of	2	header	files	and	several	source	files.		

The	two	header	files	are	unabto_platform_types.h	and	unabto_platform.h.	The	former	header	file	describes	all	
the	types	necessary	for	uNabto	to	run	while	the	latter	describes	all	the	remaining	platform	dependencies,	for	
example	macro	definitions.		

A	uNabto	platform	adapter	is	added	to	a	uNabto	project	by	adding	the	uNabto	platform	adapter	to	the	compiler's	
include	path,	then	uNabto	will	include	the	respective	unabto_platform.h	and	unabto_platform_types.h.	

Individual	configuration	macros	is	defined	in	unabto_config_defaults.h	
(https://github.com/nabto/unabto/blob/master/src/unabto/unabto_config_defaults.h).	

11.1.2 Basic	code	

The	first	step	is	to	create	a	main	program	which	can	run	uNabto	with	the	platform	adapter	being	developed.	And	
secondly	a	uNabto	configuration	file	which	sets	the	outline	for	the	implementation.	

The	main	file	below	is	just	a	simple	runner	which	sets	up	uNabto	and	calls	the	tick	function.	

unabto/demo/porting/src/main.c:	

uNabto platform adapters

NabtoTM	–		NABTO/001/TEN/023				How	to	write	a	uNabto	device	application		 Page	37	of	46	

#include <unabto/unabto_common_main.h>
#include <unabto/unabto_app.h>
int main() {
 nabto_main_setup* nms = unabto_init_context();
 nms->id = "myid.example.net";
 unabto_init();
 while(true) {
 unabto_tick();
 }
}

application_event_result application_event(application_request* request, buffer_read_t*
read_buffer, buffer_write_t* write_buffer) {
 return AER_REQ_INV_QUERY_ID;
}

	

The	uNabto	configuration	file	looks	as	follows	(unabto/demo/porting/src/unabto_config.h):	

#define UNABTO_PLATFORM_CUSTOM 1
#define NABTO_SET_TIME_FROM_ALIVE 0

	

uNabto platform adapters

NabtoTM	–		NABTO/001/TEN/023				How	to	write	a	uNabto	device	application		 Page	38	of	46	

11.1.3 Implementing	unabto_platform_types.h			

Next	the	unabto_platform_types.h	file	is	created,	it	should	define	all	necessary	types	for	uNabto.	That	is,	at	least	
timestamps,	intX_t,	uintX_t,	booleans	and	sockets	(unabto/demo/porting/src/unabto_platform_types.h):	

#include <stdint.h>
#include <stdbool.h>
#include <time.h>

typedef uint64_t nabto_stamp_t;
typedef int64_t nabto_stamp_diff_t;
typedef int nabto_socket_t;

uNabto platform adapters

NabtoTM	–		NABTO/001/TEN/023				How	to	write	a	uNabto	device	application		 Page	39	of	46	

11.1.4 Implementing	unabto_platform.h			

With	all	the	basic	types	defined,	the	unabto_platform.h	must	be	implemented.	This	can	be	used	to	implement	all	
the	adhoc	functions	which	are	not	necessarily	specified	as	a	link	time	dependency	in	
unabto_external_environment.h.	

#include "unabto_platform_types.h"
#include <platforms/unabto_common_types.h>

#define NABTO_INVALID_SOCKET -1
#define nabtoMsec2Stamp(stamp) (stamp)
#define NABTO_LOG_BASIC_PRINT(severity, message)

11.1.5 Implementing	a	Network	Adapter	

The	network	adapter	implements	the	functions	which	are	neccessary	for	creating	and	using	communication	
sockets.	This	is	init,	close,	read	and	write	functionality	for	network	data.	A	simple	unix	implementation	is	seen	
below	(greatly	simplified	-	initialization	and	error	checking	omitted	from	here	(see	full	source	in	
unabto/demo/src/porting/network_adapter.c)).	

uNabto platform adapters

NabtoTM	–		NABTO/001/TEN/023				How	to	write	a	uNabto	device	application		 Page	40	of	46	

bool nabto_init_socket(uint32_t localAddr, uint16_t* localPort, nabto_socket_t* sock) {
 nabto_socket_t sd;
 *sock = socket(AF_INET, SOCK_DGRAM, 0);
 *localPort = htons(sao.sin_port);
 return true;
}

void nabto_close_socket(nabto_socket_t* sock) {
 if (sock && *sock != NABTO_INVALID_SOCKET) {
 close(*sock);
 *sock = NABTO_INVALID_SOCKET;
 }
}

ssize_t nabto_read(nabto_socket_t sock,
 uint8_t* buf,
 size_t len,
 uint32_t* addr,
 uint16_t* port)
{
 int res;
 // ... (initialization omitted)
 res = recvfrom(sock, (char*) buf, (int)len, 0, (struct sockaddr*)&sa, &salen);
 // ... (skip error checking)
 return res;
}

ssize_t nabto_write(nabto_socket_t sock,
 const uint8_t* buf,
 size_t len,
 uint32_t addr,
 uint16_t port)
{
 int res;
 // ... (initialization omitted)
 res = sendto(sock, buf, (int)len, 0, (struct sockaddr*)&sa, sizeof(sa));
 // ... (skip error checking)
 return res;
}

11.1.6 Implementing	a	Time	Adapter	

The	uNabto	core	has	several	timers	which	handle	timed	events,	like	reconnecting	or	retransmitting	a	packet.	In	
order	to	facilitate	this,	some	time	functions	must	be	available.	The	timing	needed	does	not	need	to	be	absolute,	it	
should	just	be	monotonically	increasing	in	some	arbitrary	time	period.	

unabto/demo/src/porting/time_adapter.c:	

uNabto platform adapters

NabtoTM	–		NABTO/001/TEN/023				How	to	write	a	uNabto	device	application		 Page	41	of	46	

#include <unabto/unabto_external_environment.h>

nabto_stamp_t nabtoGetStamp() {
 struct timespec res;
 clock_gettime(CLOCK_MONOTONIC, &res);
 return res.tv_sec+(res.tv_nsec/1000000);
}

bool nabtoIsStampPassed(nabto_stamp_t* stamp) {
 nabto_stamp_t now = nabtoGetStamp();
 return *stamp <= now;
}

nabto_stamp_diff_t nabtoStampDiff(nabto_stamp_t * newest, nabto_stamp_t * oldest) {
 return newest - oldest;
}

int nabtoStampDiff2ms(nabto_stamp_diff_t diff) {
 return (int) diff;
}

	

11.1.7 	Implementing	a	DNS	Adapter	

The	DNS	adapter	must	be	able	to	do	DNS	resolving	asynchronously	as	sketched	below	(the	full	source	can	be	
found	in	unabto/demo/src/porting/dns_adapter.c):	

uNabto platform adapters

NabtoTM	–		NABTO/001/TEN/023				How	to	write	a	uNabto	device	application		 Page	42	of	46	

#include <unabto/unabto_external_environment.h>

void* resolver_thread(void* ctx) {
 resolver_state_t* state = (resolver_state_t*)ctx;
 struct hostent* he = gethostbyname(state->id);
 // ...
 resolver_is_running = false;
 return NULL;
}

void nabto_dns_resolve(const char* id) {
 uint32_t addr = inet_addr(id);
 if (addr != INADDR_NONE) {
 resolver_state.resolved_addr = htonl(addr);
 resolver_state.status = NABTO_DNS_OK;
 } else {
 // ...
 if (pthread_create(&thread, &attr, resolver_thread, &resolver_state) != 0) {
 return -1;
 }
 // ...
 }
}

nabto_dns_status_t nabto_dns_is_resolved(const char *id, uint32_t* v4addr) {
 if (resolver_is_running) {
 return NABTO_DNS_NOT_FINISHED;
 }

 if (resolver_state.status == NABTO_DNS_OK) {
 *v4addr = resolver_state.resolved_addr;
 return NABTO_DNS_OK;
 }
 return NABTO_DNS_ERROR;
}

The uNabto framework source code

NabtoTM	–		NABTO/001/TEN/023				How	to	write	a	uNabto	device	application		 Page	43	of	46	

11.1.8 Implementing	a	Random	Adapter		
#include <unabto/unabto_external_environment.h>
#include <openssl/rand.h>

void nabto_random(uint8_t* buf, size_t len) {
 if (!RAND_bytes((unsigned char*)buf, len)) {
 NABTO_LOG_FATAL(("RAND_bytes failed."));
 }
}

	

12 The	uNabto	framework	source	code	
The	uNabto	SDK	(the	framework	source,	example	platform	adapters	and	application	level	modules)	is	written	in	
C89	compliant	C,	making	it	straight	forward	to	build	with	most	compilers	and	giving	a	compact	code	size.		

12.1 Where	to	download	the	source	code	

The	uNabto	SDK	can	be	downloaded	at	https://nabto.com/devices-download.	

12.2 The	structure	of	the	source	code	

The	root	directory	of	the	uNabto	SDK	source	tree	in	the	uNabto	SDK	archive	is	named	unabto.	In	every	
subdirectory	below,	the	source	and	the	associated	header	files	are	for	the	most	part	located	in	the	same	
directory.	The	compiler	include	and	source	paths	are	therefore	identical.		

The	unabto	root	directory	includes	the	following	directories	of	interest	for	the	scope	of	this	document:	

12.2.1 The	uNabto	framework	core	source	code	and	header	file	directory	
unabto/src/unabto

This	directory	contains	the	uNabto	framework	and	also	the	API	header	file	for	inclusion	in	application	projects.	
Even	though	the	source	is	open,	it	is	highly	recommended	to	refrain	from	making	any	change	to	the	uNabto	
framework	core	source	code.	Support	from	Nabto	will	be	difficult	and	future	releases	might	break	the	patched	
code.		

12.2.2 The	uNabto	platform	adapter	specific	source	directories	

The	source	files	for	each	of	the	native	platforms	adapters	are	for	the	most	part	placed	in	the	directory:	

unabto/src/platforms

The uNabto framework source code

NabtoTM	–		NABTO/001/TEN/023				How	to	write	a	uNabto	device	application		 Page	44	of	46	

But	for	some	native	platforms,	the	component	source	is	placed	in	the	modules	directory	–	see	the	next	section.		

12.2.3 The	feature	module	and	platform	adapter	specific	source	directory	
unabto/src/modules

This	directory	contains	source	code	for	feature	extension	modules,	but	also	native	platform	specific	adapter	
components.	The	feature	extension	modules	and	adapter	components	are	used	by	Nabto	in	various	projects	and	
made	public.		

A	short	description	some	of	the	feature	extension	modules:	

acl	–	module	to	help	implementing	device	access	control.	
crypto	–	a	required	module	if	a	cryptographic	secured	communication	is	wanted.	-	CHECK	
random/dummy	–	If	the	cryptographic	engine	in	uNabto	is	enabled,	a	function	to	create	random	strings	is	
required.	This	module	provides	a	dummy,	but	in	a	cryptographic	sense	useless,	function.		

A	short	description	of	some	the	platform	adapter	specific	modules:	

network/bsd	–	a	uNabto	Platform	Adapter	for	the	UNIX	network	interface.	
network/winsock	–	a	uNabto	Platform	Adapter	for	the	Microsoft	Windows	network	interface.	
timers/unix	–	a	uNabto	Platform	Adapter	for	the	Unix	time	interface.	

12.2.4 API	include	directories	

All	uNabto	public	header	files	are	located	in:	

unabto/src/unabto

In	an	application	it	is	sufficient	to	include	the	header	file:	

unabto.h

The	targets	uNabto	framework	Adapter	contains	a	header	file	called	unabto_platform.h,	this	file	must	in	the	
compilers	include	search	path.	

12.3 Building	the	uNabto	SDK	with	CMake	

Nabto	has	provided	a	cmake	script	file	to	build	the	uNabto	SDK.	This	file	is	located	in	the	uNabto	source	package:	

unabto/build/cmake/unabto_files.cmake

This	script	is	to	be	included	in	an	application	CMake	project	file	(see	existing	demos	in	the	apps	directory).	

The uNabto framework source code

NabtoTM	–		NABTO/001/TEN/023				How	to	write	a	uNabto	device	application		 Page	45	of	46	

12.4 Device	platform	memory	requirements	

Configured	to	an	absolute	minimum	the	uNabto	framework	and	uNabto	platform	adapter	alone,	i.e.	without	
network	stack	etc.,	requires	in	general:	

12.4.1 RAM	usage	

	 500	Bytes	for	buffers	etc.	
	 500	-	700	Bytes	of	stack	memory.	

12.4.2 ROM	usage	

This	is	very	dependent	on	the	target	and	the	quality	of	the	used	compiler.	From	the	experience	gained	by	the	
porting	of	uNabto	to	various	platforms	a	minimum	of	10KB	and	up	to	40KB	(e.g.	the	Microchip	PIC18)	is	in	the	
expected	ROM	usage	range	for	the	uNabto	framework	alone.	The	network	stack	will	use	additional	memory.	

The	uNabto	request/response	protocol	can	be	implemented	in	less	than	1	kB	flash	if	hand-coding	the	
implementation	and	bypassing	the	abstractions	provided	by	the	SDK.	

	

	 	

The uNabto framework source code

NabtoTM	–		NABTO/001/TEN/023				How	to	write	a	uNabto	device	application		 Page	46	of	46	

12.5 Summary	of	the	referenced	configuration	parameters	

The	following	table	summarize	the	configuration	parameters	mentioned	in	this	document	and	also	presents	the	
minimum	set	a	developer	must	know	about	to	get	the	uNabto	framework	configured	correctly.	

Name	 Default	 Description	
NABTO_RESPONSE_MAX_SIZE	 200	 Define	to	the	maximum	expected	query	response	sent	

to	the	client.	

NABTO_REQUEST_MAX_SIZE	 200	 Define	to	the	maximum	expected	query	request	sent	
from	the	client.	

NABTO_CLIENT_ID_MAX_SIZE	 64	 Maximum	allowed	length	of	the	email	passed	in	the	
credentials	to	the	client.	If	very	long	email	addresses	are	
expected	this	must	be	adjusted	accordingly,	otherwise	
device	access	restriction	policies	will	fail.	

NABTO_APPLICATION_EVENT_MODEL_ASYNC	 0	 Set	to	1	if	the	device	may	spend	more	than	50ms	before	
returning	the	response	to	a	client’s	request.		
Further	details	in	section:	Synchronous	and	
asynchronous	operation	modes	

NABTO_SET_TIME_FROM_ALIVE	 1	 Set	0	if	the	application	won’t	need	the	current	time	in	
UTC	from	the	basestation.	If	this	option	is	set	the	
application	must	implement	the	setTimeFromGSP	
function.	

NABTO_ENABLE_UCRYPTO	 1	 Set	to	0	if	the	communication	between	client	and	
device	does	not	require	encrypted.	

NABTO_ENABLE_LOGGING	 1	 Set	to	0	if	the	log	messages	from	the	uNabto	framework	
aren’t	wanted.	

	

